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There is no question scientific testing shows that a diet full of natural foods is our best defense against pathogens. 
Contained within these plants are phytochemicals. One class of phytochemicals are polyphenols. They are a large 
group of heterogeneous compounds characterized by hydroxylated phenyl moieties, and are found mostly in plants, 
including fruits, vegetables, nuts, seeds, and cereals, as well as natural nutraceuticals such as MLG-50TM fulvic 
mineral powder, or beverages such as tea, coffee and wine [1].  
 
Polyphenols have become an intense focus of research due to their potential benefits to health, particularly in 
relation to the prevention of cancer [2, 3] and cardiovascular diseases [4, 5].  
 
Their suggested beneficial effects are anticarcinogenic [6, 7], antiatherogenic [8, 9], antiulcer [10], antithrombotic 
[11, 12], anti-inflammatory [13, 14], antiallergenic [15, 16], anticoagulant [17], immune modulating [18], 
antimicrobial [19, 20], vasodilatory [21], and analgesic activities [22].  
 
To achieve these health benefits, polyphenols require in situ processing by the gut microbiota to be transformed 
into a potentially more bioactive, low-molecular-weight metabolite [23]. Faria et al. (2014) reviewed that total 
polyphenol absorption in the small intestine is relatively low (5%–10%) in comparison to other macro- or 
micronutrients. The remaining 90%–95% of polyphenols transit to the large intestinal lumen and accumulate in the 
millimolar range. From the lumen, together with conjugates excreted from bile, they are exposed to the enzymatic 
activities of the gut microbiota [24]. The microbiota that colonize the distal regions of the colon represent the 
highest concentration of microorganisms found in human body, as well as the most diverse [25]. It is known that the 
human gut has an ecosystem of around 1013–1014 bacterial cells, an estimate 10 times that of human somatic cells 
[26]. In addition, the aggregate microbial genome (i.e., microbiome) is predicted to contain more than three million 
genes, or 150 times more than human genes [27].  
 
The reciprocal relationship between polyphenols and gut microbiota may contribute to host health benefits. The 
need to clarify the molecular mechanisms underlying the observed prebiotic enrichment of beneficial bacteria and 
antimicrobial activities against gut pathogenic bacteria is apparent [23, 29-33].  
 
Commensals residing in the gut may improve health by protecting against gastrointestinal disorders and pathogens, 
processing nutrients, reducing serum cholesterol, strengthening intestinal epithelial tight cell junctions, producing 
antibodies, increasing mucus secretion and modulating intestinal immune response through cytokine stimulus [34, 
35].  
 
Furthermore, the gut microbiota bio-transforms polyphenols into metabolites that may have greater biological 
activity than their precursor structures [23]. In short, the gut microbiota is essential for the maintenance of 
intestinal homeostasis and overall optimal human health [28].  
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Gut Health, Inflammation and Immunity 
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more 
than one respect, it can be said that “ you feed your microbiota and it feeds you”[36].  
 
GM diversity is affected by diet. Our GM influences metabolic and immune functions of the host’s physiology. 
Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various 
pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and 
diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health.  
 
For this reason, phytochemicals, such as polyphenols (e.g. fulvic acids) that can influence GM have recently been 
studied as adjuvants for the treatment of obesity, inflammatory diseases and overall immune health.  
 
Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and 
derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be 
subclassified into four main groups:  

1. flavonoids (including eight subgroups)  
2. phenolic acids (such as curcumin)  
3. stilbenoids (such as resveratrol)  
4. and lignans  

 
Once nutrients and nutraceuticals (e.g. polyphenols) have been incorporated into the body, the gut environment is 
essential in maintaining homeostasis; in this sense, like GM, the surface of the intestinal mucous membrane plays a 
fundamental role in the preservation of homeostasis. Consequently, the correct functioning of its permeability is of 
great importance [36].  
 
Several pathologies, as well as susceptibility to metabolic diseases, have been linked to alterations in the 
permeability of the intestinal barrier. Humans possess two interacting genomes: their own complete set of DNA and 
that of the microbiome genome (e.g. the entire genome of each of the multitude of microbes that colonize our 
small and large intestine) the majority of which resides in the gut, in the layer of mucin glycoproteins (mucus) 
produced by the cells called goblet cells [37].  
 
The microbiome provides products such as vitamins and nutrients to human cells, thereby establishing a beneficial 
ecosystem for host physiology and preventing the proliferation of pathogens [38]. Thus, a symbiotic relationship is 
established between both genomes, through the expression of pattern recognition receptors (PRRs) that sense the 
presence of intestinal microbiota, through the microbe-associated molecular patterns (MAMPs).  
 
This communication between the two genomes results in the accuracy of the mucosal barrier function, by regulating 
the production of its components: mucus, antimicrobial peptides, IgA and IL-22, facilitating homeostasis, and 
immune health [38-40]. Therefore, GM and the human host influence each other by exchanging their metabolic 
active molecules [41], working together, as a hologenome, to maintain mutual health [42]. 
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Polyphenols and Cytokine Modulation 
Cytokines are important mediator proteins, essential in networking communication for the immune system. 
Cytokines can be produced by lymphocytes (lymphokines), or monocytes (monokines) with pro-inflammatory and 
anti-inflammatory effects. Cytokines with chemotactic activities are termed chemokines. The equilibrium between 
pro-inflammatory cytokines (IL-1b, IL-2, TNFa, Il-6, IL-8, IFN-g . . . ) and anti-inflammatory cytokines (IL-10, IL-4, 
TGFb) are thought to be an important parameter in immune response homeostasis and inflammation underlining 
many disease states [43].  
 
In vivo and in vitro studies demonstrate that polyphenols affect macrophages by inhibiting multiple key regulators of 
inflammatory response such as the inhibition of TNFa, IL-1b, and IL-6 [44].  Flavonoids, as well, have an important 
anti-inflammatory effect by influencing cytokines’ secretion. Several flavonoids are found to inhibit the expression of 
various pro-inflammatory cytokines and chemokines like TNFa, IL-1b, IL-6, IL-8, and MCP-1 (monocyte 
chemoattractant protein-1) in multiple cell types such as LPS-activated mouse primary macrophages, activated 
human mast cell line, activated human astrocytes, human synovial cells, and human peripheral blood mononuclear 
cells [45-50].  Modulation of inflammatory cytokines is one of many common mechanisms by which polyphenols in 
general exert their immunomodulatory effects. 
 
Polyphenols, Inflammation, and Modulation of the NFkB Signaling Pathway 
NF-kB or nuclear factor kappa-light-chain-enhancer of activated B cells is a complex protein that plays a key role in 
deoxyribonucleic acid (DNA) transcription, cytokine production and cell survival. It controls immune, inflammation, 
stress, proliferation and apoptotic responses of a cell to multiple stimuli [51].   
 
The expression of a large number of genes involved in inflammation is controlled by NF-kB and the inhibition of NF-
kB can be of a great benefit in controlling inflammatory conditions [52].  Several polyphenols modulate NF-kB 
activation and reduce inflammation[53, 54].  For example, genistein or quercetin repress LPS-induced activation of 
NF-kB in monocytes and reduces the inflammation by inhibiting NF-kB activation upon adenosine monophosphate 
activated protein kinase stimulation in LPS-stimulated macrophages [55, 56].  Flavonoids can modulate NF-kB 
activation cascade at early phases by affecting IKK activation and regulation of oxidant levels or at late phases by 
affecting binding of NF-kB to DNA in T-cells [57]. Hydroxytyrosol, and resveratrol inhibit NF-kB activation, and the 
expression of VCAM-1 in LPS-stimulated human umbilical vein endothelial cells [58].   
 
In summary, polyphenols can modulate NF-kB activation cascade at different steps such as by affecting IKK 
activation and regulating of the oxidant levels or by affecting binding of NF-kB to DNA leading to an important anti-
inflammatory effect responsible for their potential value in treating chronic inflammatory conditions (Figure 1). 
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Polyphenols, Oxidative Stress, and Inflammation 
Higher production of reactive oxygen species (ROS) is associated with oxidative stress and protein oxidation [59]. 
Subsequently inflammatory molecules and different inflammatory signals (i.e., peroxiredoxin2) are triggered by 
protein oxidations [60]. Furthermore, overproduction of ROS can prompt tissue injury that initiates the 
inflammatory process [61-65].  
 
Therefore, the classical antioxidant actions of polyphenols undoubtedly contribute to their anti-inflammatory roles 
by interrupting the ROS-inflammation cycle (Figure 2). Polyphenols are known for their antioxidant activities; they 
scavenge a wide-ranging selection of ROS. Polyphenols can scavenge radicals and chelate metal ions, for example 
quercetin chelates iron ion [66]. They also inhibit multiple enzymes responsible of ROS generation [67]. In fact, free 
metal ions, as well as highly reactive hydroxyl radical release, is increased by the formation of ROS.  
 
To the opposite, polyphenols are able to chelate metal ions like Fe2+, Cu2+, and free radicals which lead to a 
reduction of highly oxidizing free radicals in the body [68].  Transition metal ions, like Fe+2, Cu2+, Co2+, Ti3+, or Cr5+, 
results in OH• formation from H2O2 [69, 70]. Curcumin is able to chelate transition metal (Cu2+ and Fe2+) ions. Alike, 
EGCG and quercetin chelate Fe2+ (iron ion) [66]. Polyphenols like apocynin, resveratrol, and curcumin can inhibit 
NOX (NADPH oxidase) causing a reduction in the generation of O2• during infections consecutively in endothelial 
cells in THP1-monocytes [71-73].  
 
Additionally, polyphenols can attenuate the mitochondrial ATP synthesis by blocking the mitochondrial respiratory 
chain and ATPase. As a result, ROS production is diminished. Curcumin [74], EGCG [75], phenolic acids [76], capsaicin 
[77], quercetins [78], anthocyanins [78], and resveratrol analogs [79] inhibit xanthine oxidase. Thus, they reduce 
ROS production.  
 
Polyphenols affect the activity of cyclooxygenase, lipoxygenase, and NOS (nitric oxide synthase) as per found in 
macrophages [80]. These enzymes are known to metabolize arachidonic acid and their inhibition moderates the 
production of key mediators of inflammation (prostaglandins, leukotrienes, and NO . . . ) [80].  
 
Polyphenols exert the anti-inflammatory action by different mechanisms: radical scavenging, metal chelating, NOX 
inhibition, tempering the mitochondrial respiratory chain, inhibition of certain enzymes involved in ROS production, 
like xanthine oxidase and upregulation of endogenous antioxidant enzymes. 
 
 
Continued…./ 
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Conclusion 
In conclusion, the vast number of published studies proved the immunomodulatory role of polyphenols in vivo and 
in vitro. Different underlying regulatory mechanisms are now well elucidated.  These data highlighted here help 
demonstrate the promising role of polyphenols in prevention and therapy of diseases with underlining inflammatory 
conditions, including cancer, neurodegenerative diseases, obesity, type II diabetes, and cardiovascular diseases. It is 
generally believed that polyphenol activity is principally located in the gut where their immune-protective and anti-
inflammatory activities are initiated and subsequently ensuring systemic anti-inflammatory effects. Since different 
polyphenols can have multiple intracellular targets, additional data is needed to determine the consequences of the 
interaction or the synergistic effects between multiple polyphenolic compounds or polyphenols and commonly used 
medications. Moreover, further in vivo and meta-analysis studies in humans are necessary to fully reveal the 
mechanisms of action of polyphenols in several physiological conditions in order to produce important insights into 
their prophylactic and therapeutic uses. 
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